
 

978-1-4244-1674-5/08 /$25.00 ©2008 IEEE                              CIS 2008 

Simulating Virtual Crowd with Fuzzy Logics and 
Motion Planning for Shape Template 

 

Jen-Yao Chang 

Computer Science Department 
National Chengchi University 

Taipei, Taiwan 
g9314@cs.nccu.edu.tw 

Tsai-Yen Li 

Computer Science Department 
National Chengchi University 

Taipei, Taiwan 
li@cs.nccu.edu.tw

 
 

Abstract—Simulation of crowd motions has great potential in 

many applications in robotics, games and animations. However, it 

is also a great challenge to be able to control the motion of a vir-

tual crowd according to the intents of its designer such as making 

the crowd conform to a specific shape while avoiding collisions 

with other agents in the crowd or with obstacles. In this paper, 

we propose a simulation mechanism that works in two steps: 

global motion planner for a shape template and fuzzy controller 

for shape constraints. The system first uses a motion planer to 

generate a rough path for a desired shape that may be partially 

in collision with the environment. Then a fuzzy controller based 

on several criteria is used to move the agents in a group to con-

form to the desired shape. We will demonstrate the implemented 

system with several simulation examples that show the path of 

the shape template and how the crowd effectively conforms to the 

template. 

Keywords—Virtual Crowd Simulation, Motion Planning, 

Fuzzy Control for Crowd Motion, Compuer Animation 

I.  INTRODUCTION 

Group formation is a problem that has been studied in ro-
botics for long. In recent years, the problem of simulating the 
motion of a large crowd consisting of many agents has attracted 
much attention in the applications in the entertainment industry 
such as games and films. The characteristics of the problem 
defined for this type of applications differ from the robotic ap-
plications in several ways: the physical model of the agents can 
be simplified, the simulation can be centrally controlled, and 
the visual effect usually is the primary objective. Much pre-
vious work has successfully demonstrated the power of using 
virtual forces or similar techniques to create realistic emergent 
group behavior for a large crowd with consistent group beha-
viors. Some commercial simulation packages can also offer this 
function to animation designers. However, due to the nature of 
the simulation-based approaches, which usually lacks a global 
view and fine-grain control, it is still a great challenge to create 
crowd motions that can conform to a user-specified shape 
along a reasonable path for a crowd in an automatic fashion.  

In many applications, the shape of a crowd may bear spe-
cial meanings in the application context that the designer would 
like to convey. For example, forming an arrow shape for a 
group of soldiers, as shown in Fig. 1, could be useful in defeat-
ing their enemy. In addition, different shapes of crowds for 

congregated animals are often created in cartoon animations to 
create special visual effects. For example, a crowd of bees can 
form the shape of an elephant to express powerfulness visually. 
However, with the traditional tools for creating animations, 
authoring such a scene would be very tedious and time-
consuming because the complex motion of the crowd needs to 
be specified by hand. Most current crowd simulation tools can-
not easily enforce such a shape constraint either.  

In this paper, we propose a novel approach to the problem 
of creating crowd motions with shape preference automatically 
according to a user-defined goal. The approach consists of two 
steps: first generating a rough path for the desired shape tem-
plate and then control the crowd to move with fuzzy rules.  
Given the specification of goal configuration and how strictly 
the shape should be respected, the planner attempt to generate a 
path for the shape template that may not be all collision free. 
The template along the path will be used to guide the motion of 
the crowd with fuzzy rules of several types.  The resulting 
crowd motion would be one that moves along a reasonable 
route that can keep the desired shape as much as possible.  

In the next section, we will discuss the previous work per-
taining to crowd motion simulation. In Section III, we will de-
scribe a modified version of Best-First planning algorithm that 
is used to generate the motion for the template. In Section IV, 

 
Figure 1.  Example of shape formation for crowd simulation in a battle game 
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we will present the classes of fuzzy rules that we have used to 
control the motion of the crowd such that they can perform 
desirable movement behaviors. In Section V, we will use simu-
lation examples to illustrate the effectiveness of the planner and 
control system. Finally, we will conclude the paper with future 
directions. 

II. RELATED WORK 

The topic of crowd simulation has attracted much attention 
in the field of computer animation in the past two decades. In 
his early work on simulating flocking behaviors for boids, 
Reynolds [12][13] proposed a virtual force model consisting of 
three types of steering forces: separation, cohesion, and align-
ment, which are used to drive the motion of each individual 
agent to create emergent behaviors. Despite the advantage of 
easy implementation, the resulting crowd motion is difficult to 
control by simply adjusting the weights of these virtual forces. 
Anderson used a similar force model and some shape con-
straints for the crowd to make the agents conform to the given 
shape in an incremental fashion [1]. However, the shape of the 
crowd needs to be determined before hand, and the time that 
the system takes to adjust the shape makes it difficult for on-
line applications.  

Computing paths for a single robot or a group of robots are 
classical motion planning problems in robotics [3]. However, in 
most traditional motion planner, the robots are considered as a 
rigid body or a system consisting of several rigid body parts 
that cannot be deformed at run time. Bayazit added some glob-
al information in the roadmap constructed for a given environ-
ment to facilitate more sophisticated group behaviors exploit-
ing the knowledge of the environment [2]. Kamphuis proposed 
to generate crowd motions by planning the motion of some 
given shapes with the Probabilistic Roadmap Method 
(PRM)[7]. This method can overcome the problem of group 
shape control that is difficult to achieve by virtual forces. How-
ever, the bottleneck of this method is that limited shapes are 
allowed in the planning; thus, it limits the feasible paths that 
can be generated for more flexible shapes.  

The methods of using fuzzy logics have been widely used 
in many applications including robot motion controls. It has the 
advantage of being able to incorporate uncertainties seamlessly 
into traditional control methods. Adaptive fuzzy logic control-
lers (FLC) were designed especially for controlling robots to 
tackle various kinds of uncertainties through linguistic presen-
tation. In [14], Tunstel proposed an FLC for autonomous robots 
with three basic types of behaviors: goal-seek, route-follow, 
and localize. Some of these behaviors are also considered in 
this paper. Berman has also used a hierarchical behavior model 
with fuzzy rules to control many agents moving in a scene 
while avoiding collisions with each other [3]. Michaud pro-
posed using fuzzy selection to select appropriate actions ac-
cording to the environment the robot is situated in [10].   

III. MOTION PLANNING FOR SHAPE TEMPLATE 

Most early work on the problem of motion planning for 
flexible objects focused on existing physical objects with flex-
ibility to some degree such as a plate or a string [11][7][4]. 
However, no much work has been done for objects that can be 

deformed to an arbitrary shape probably due to the difficulty of 
parameterizing this kind of objects. In our previous work [5], 
we have attempted to design a motion planner for a reshapeable 
object that can deform to pass narrow passages in the environ-
ment to reach a goal while keeping the shape of circle as much 
as possible. However, due to the complexity of maintaining the 
configuration of a flexible shape, the performance of the plan-
ner starts to degrade when the dimension of orientation is in-
troduced for an asymmetric shape.  

Instead of coping with detail shape changes in global mo-
tion planning, in this paper we have adopted a two-level plan-
ning approach: generating a path for the desired shape template 
with minimal collisions and then deforming the shape accord-
ing to the configurations of the template along the path in a 
postprocessing step. We will describe these two steps in the 
following subsections. 

A. Planning for Shape Template 

We assume that, as in a traditional path planning problem, 
we are given a geometric description of the 2D shape that we 
prefer the crowd to form and its initial and goal configurations, 
which are in a 3D configuration space (C-space, (x, y, θ)). The  
objective of the planner in this stage is to generate a continuous 
path in the template C-space such that the center of the shape, 
defined as part of the geometry, remains collision-free along 
this path. In addition to this hard constraint, some soft con-
straints, acting as preferences, can be specified and used as the 
search criteria. For example, the length of the path and the de-
gree of overlapping with the obstacles in the environment are 
two criteria that we have used in our planner. The degree of 
overlapping is defined as the areas (or number of cells) in the 

Algorithm: Template_BFP(Tinit , Tgoal) 

Input: Initial and goal template configurations Tinit, Tgoal, ob-

stacle bitmap OB. 

Output: a feasible path P. 

1. Initialize a priority queue Q sorted according to the objec-

tive function F, and a configuration space C. 

2.  SUCCESS = false; 

3.  Insert Tinit into Q 

4.  while Q is not Empty and SUCCESS = false 

5.  begin 

6.    Tc = Dequeue(Q) 

7.    for all neighbor T’ of Tc  

8.      if T’ is collision-free in OB and not visited in C then 

9.        Insert T’ into Q 

10.      Mark T’ as visited in C 

11.    if T’ = Tgoal then 

12.       SUCCESS = true 

13. end 

14. if SUCCESS = true then 

15.    return the constructed path by tracing the template con-

figuration from Tgoal back to Tinit  

16. else return failure 

Figure 2.  The Template_BFP algorithm 



 

         

workspace where the template and the obstacles in the envi-
ronment overlap.  

The path planning algorithm is a modified Best-First Plan-
ning algorithm that is commonly used in solving the motion 
planning problems in lower dimensional C-spaces [3]. We as-
sume that the workspace and the C-space are all represented as 
discrete space of uniform grids. The algorithm, called Tem-
plate_BFP, is outlined in Fig. 2. The main differences from 
traditional BFP planners are in line 6 and line 8. In line 8, a 
configuration is considered legal if the center of the template is 
not inside an obstacle. In line 6, the priority in a queue is de-
fined according to a function F, which is composed of two 
components: shape cost and length cost. The shape cost for a 
template configuration is calculated based on the number of 
cells overlapping with the obstacle regions. The length cost is 
computed based on the Euclidean distance of the center along 
the path in the workspace. Since the two costs are computed 
based on different metrics, we have to normalize them before 
they are linearly composed according to user-specified weights. 
The path generated by the algorithm is then smoothed accord-
ing to the same criteria to obtain a less jerky and more natural 
movement for the shape template.  

B. Deforming Shape According to Environment Constraints 

Once the path for the shape template is generated, we will 
use it to compute the real shape, possibly deformed, in every 
step of the path for the crowd according to the constraints of 
the environment. Since the agents in a crowd cannot move in-

stantaneously, the shape of a crowd cannot be changed without 
a limit. Without losing generality, we further assume that the 
agents can move one cell at most for a given time step. Conse-
quently, the shape deformation can be realized by focusing on 
the boundary cells only.  

The algorithm for shape deformation is shown in Fig. 3. 
The procedure takes the shape configuration from the previous 
step, the current template configuration, and the obstacle bit-
map as inputs. A shape configuration consists of a list of cells 
constituting the deformed shape in the free workspace. The 
output of this procedure is the shape configuration for the cur-
rent step. What the procedure does is moving the cells in the 
boundary region of the shape forward to the unoccupied region 
of the template at the new configuration. We keep two priority 
queues for the source and destination sets of cells for the 
movement and attempt to move cells one by one from the 
source to the destination region until one of the queues be-
comes empty. The order of movement priority is computed 
based on the distance to desired template. That is, the cells that 
are farther away will have higher priority to be relocated to the 
empty region in the new template configuration.  For each tem-
plate configuration along the path, we may call the procedure 
multiple times until the shape cannot be further deformed to 
yield a better score on the distances to the template. In other 
words, the path of the template is parameterized by time ac-
cording to the speed limit of the cells in the shape to allow 
large deformation to occur.  

C. Example 

We have implemented the planner with the Java language. 
Snapshots of the deformed shape along the paths generated 
with three different criteria are shown in Fig. 4. The initial con-
figuration for the template is at the left corner while the goal is 
at right corner. The initial shape is a rectangle, and the desired 
shape is an arrow. Along the path in each case, the arrow shape 
is formed gradually and kept as long as the environment is al-
lowed. In this example, we have designed an environment con-
sisting of several passages with various widths. In the three 
cases shown in Fig. 4, we have used different weights on the 
costs of shape and path length. The weights (wshape, wlength) for 
the two costs in the three examples are (0.0, 1.0), (0.5, 0.5), and 

Algorithm: Deform_Shape (T, C) 

Input: Template configuration T, parent shape configuration 

C, Obstacle Bitmap OB 

Output: New configuration C’ 

Define: G is a cell in C, and Dist(G) is the distance to Tem-

plate at T 

1. Clone C’ from C 

2. Qsrc and Qdst are queues sorted according Dist(G). 

3. for each Gi of CBoundary in C’ 

4.    Insert Gi into Qsrc 

5.    for each Gi’ neighbor of Gi 

6.       if Gi’ is collision-free in OB then 

7.          Insert Gi’ into Qdst 

10. nb_moves = 0 

11. while Qsrc is not nil and Qdst is not nil 

12.  begin 

13.     Sc = Dequeue(Qsrc) 

14.     Dc = Dequeue(Qdst) 

15.     if Dist(Dc) > Dist(Sc) then break 

16.     remove Sc in C’ 

17.     add Dc in C’ 

18.     nb_moves ++; 

19.  end 

20. if nb_moves = 0 then return nil 

21. return C’ 

Figure 3.  The DeformShape procedure used to deform the shape 
according to a template configuration 

 
 

Figure 4.  Snapshots of the deformed arrow shape in the generated paths with 
different search criteria  



 

         

(1.0, 0.0), respectively. For example, in case (a), the shape is 
deformed to go through the lowest narrow passage to yield the 
shortest path. The planning times for generating the template 
paths are 516, 703, and 1812ms, respectively, and the post-
processing times for deforming the shape are 422, 1312, and 
19,125ms, respectively, on a P4 1.6GHz machine.  The case in 
(c) takes the longest time since a longest path is generated as a 
result of searching a larger portion of the configuration space.  

IV. USING FUZZY LOGICS TO CONTROL CROWD MOTIONS 

Although the path for the desired shape deformed according 
to the environment has been generated as described in the pre-
vious section, the final crowd motion may not exactly match 
the deformed shape. Instead, the deformed shape is used as a 
reference to guide the simulation of the crowd motion. In this 
section, we will describe how we use the mechanism of fuzzy 
control to design appropriate fuzzy rules to control the motions 
of the agents in a crowd to form a desired shape.  

A. Fuzzy Behavior Model 

According to our observation of the interaction between 
people in our real life, we have modeled the behaviors of the 
agents in a crowd and the primitive actions associated with 
these behaviors. We classify the behaviors into three types: 
Intra-agent, reactive, and inter-agent. Each category of beha-
viors contains several fuzzy behaviors, and each behavior mod-
el contains primitive actions, as depicted in Fig. 5. In the Intra-
agent category, we consider the behaviors that are based on an 
individual agent’s intents regardless of other agents and the 
environment. These behaviors include keeping a constant speed, 
seeking the goal, and attempting to move within a given shape 
template. The second category concerns reactive behaviors 
such as avoiding collisions with other agents or the obstacles in 
the environment. The third inter-agent category is about how to 
maintain collective motions as a group with emergent beha-
viors, which is similar to the virtual force model proposed by 
Reynolds[12]. 

B. Design of Fuzzy System 

We have used the systems described in [3][15] as refer-
ences to design our fuzzy control system. We use linguistic 
variables and fuzzy rules to describe the relation between sen-
sation and actions. The linguistic variables and number of lin-
guistic terms associated with each primitive action are listed in 
Table I. Examples of linguistic terms for speed and orientation 

related linguistic variables are shown in Fig. 6. Each primitive 
action is represented by a distinct control policy governed by 
the fuzzy inference of General Modus Ponens (GMP). We have 

designed a fuzzy knowledge base (FKB) to store the fuzzy 
rules and used a fuzzy logic controller (FLC) to control the 
motions of the agents. In each control loop, the system fuzzifies 
the position, speed, and orientation of the agents and environ-
mental information such as goal position, surrounding agents, 
and obstacle configurations for the processing of FKB. Then it 
defuzzifies the results to obtain the control parameters that 
drive the motions of the agents. In this work, we have used the 
method of center of gravity to defuzzify the result. Before 
sending the result for execution, all of the generated control 
commands will be filtered through a physical module to ensure 
that the physical constraints such as maximal acceleration and 
velocity are not violated.  
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Figure 5.  Hierarchy of behavior model used in designing fuzzy rules 
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Figure 6.  Examples of linguistic terms for (a) speed related variables and (b) 
orientation related vartiables in the membership functions 

TABLE I.  LANAGUAGE VARIABLES AND NUMBER OF LINGUISTIC 

ITEMS FOR EACH FUZZY BEHAVIORS 

Fuzzy 

Behavior 

Primitive Action Linguistic Variables Linguistic 

Terms 

Keep 
speed 

Keep constant 
speed & Stay still 

Current_Speed 7 

Expected_Acceleration 9 

Seek goal 

Move toward goal 
FacingAngle_Difference 9 

Expected _TurningAngle 9 

Stay around goal 
Distance_To_Goal 3 

Expected_Acceleration 9 

Keep 
shape 

Move toward 
template & Stay 
in template 

FacingAngle_Difference 9 

Expected_TurningAngle 9 

Avoid 
others 

Keep distance 
Distance_To_Agent 3 

Expected_Acceleration 9 

Adjust angle 
Relative_Angle 9 

Avoid_Agent_Angle 9 

Avoid 
obstacles 

Keep distance 
Distance_To_Obstacle 3 

Obstacle_Force 3 

Adjust angle 

Left_Detection 3 

Front_Detection 3 

Right_Detection 3 

Obstacle_TurningAngle 9 

Group 
forming 

Keep same speed 
Relative_Speed 5 

Expected_Acceleration 9 

Keep same 
direction 

Relative_Angle 9 

Expected_TurningAngle 9 

Keep constant 
distance 

Relative_Distance 3 

 



 

         

V. EXPERIMENTAL RESULTS 

A. Implementation 

We have implemented the crowd simulation system de-
scribed in the previous sections with the Java language. The 
system contains a graphical user interface allowing the user to 
design the environment, specify the desired shape, and position 
the initial and goal configurations for the shape template. After 
the problem is specified, the system will first generate a path 
for the shape template to reach the goal and then deform the 
shape along the path according to the obstacles in the environ-
ment. This transforming shape will then be used in the keep-
shape behavior (see Section IV) to constrain the motion of the 
crowd.  

B.  Simulation Examples 

We have used several template shapes to test the effective-
ness of the fuzzy control system as shown in Fig. 7. The snap-
shots in each sub-figures are taken in the formation of the de-
sired shapes (arrow-shape, u-shape, w-shape) from the initial 
square shape. Note that the red hollow shapes are the desired 
shape templates specified by the user while the pink solid re-
gions are the collections of cells deforming to fit the shape 
template. Since there are no obstacles in this case, the regions 
will fit the template eventually. The dots in each figure are the 
agents composing the crowd (128 dots in this case). Although 
not all of them can retain in the desired shapes during the de-
formation process, they all intend to move into the designated 
shapes under the keep-shape fuzzy rules described in the pre-
vious section.  

We have also used an environment scattered with many 
small obstacles, as shown in Fig. 8, to test the robustness of the 
fuzzy control system on environment variables. Since the ob-
stacles are relatively small, the template penetrates them direct-
ly to reach the goal on the right of the workspace. The arrow 
shape also did not deform much due to the small size of the 

obstacles. However, the formation of a specific shape may not 
be kept all the time due to the obstruction of the scattered ob-
stacles. Nevertheless, the agents in the crowd can reform and 
resume the desired shape very quickly along the way of pene-
trating the obstructive region and thereafter. The resulting si-
mulation can be exported to commercial 3D animation pack-
ages such as Maya for postprocessing of better rendering quali-
ty as shown in Fig. 9. 

VI. CONCLUSIONS AND FUTURE WORK 

Crowd simulation is a popular topic with great application 
potential in recent years. The generation of plausible crowd 
motions has also been demonstrated in much previous work. 
However, designing a crowd simulation system that can gener-
ate controllable results remains a great challenge. In this paper, 
we have described a motion planning and fuzzy control system 
that can generate crowd motions that can conform to a user-
specified shape while complying to environmental constraints. 
Despite the high complexity of the path planning system, we 
have designed a practical planner that can generate paths for a 
deformable shape in an on-line manner. In addition, we have 
designed a collection of fuzzy rules to control the agents in the 
crowd to move in a collective, collision-free, and conforming 
manner toward the goal location. We have used several simula-
tion examples to demonstrate the effectiveness and robustness 
of the implemented system.  

Although the fuzzy control system has been built and suc-
cessfully demonstrated, not all desired crowd motion behaviors 
have been fully covered. For example, in the current system, 
we sometimes find that although the agents can remain in the 
desired shape, it takes some time for them to spread evenly 
inside the shape. In addition, all the agents in the crowd in our 
current system use the same set of rules. This makes the crea-
tion of emergent group motion easier but it also limits the be-
havior diversity that can be created when the behavior model of 
each agent is individualized. We are currently working on these 
directions to design a more controllable virtual crowd.  

 
(a) 

 
(b) 

 
(c) 

Figure 7.  Examples of crowd motions conforming to a given shape 

 
Figure 8.  Example of crowd motion moving through scattered obstacles 

while maintaining an arrow shape 

  

Figure 9.  Snapshots of crowd simulation in 3D for the example in Fig. 8 
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