
 1

Generating Guitar Scores from a MIDI Source
Jeng-Feng Wang and Tsai-Yen Li*

Computer Science Department
National Chengchi University, Taiwan, R.O.C.

* {s8239,li}@cs.nccu.edu.tw

Abstract

Most music-related software packages were de-
signed for students to learn music theories or for
the music professionals to compose music. How-
ever, amateur music instrument players often
need another form - acquiring an instrument-
specific score from a music source. In this paper,
we describe a software package capable of
automatically generating guitar chords and fin-
gering styles from music sources in MIDI format.
The software program extracts melody from a
MIDI file, uses weighted rules based on harmon-
ics to select appropriate chords, and then uses
principles of guitar composition to generate a
six-line score. This program, developed under
MS Windows environments, also allow users to
interactively edit chords and fingering styles in
order to create a customized guitar score.

1. Introduction

Computer music has been an active field for sev-
eral decades. Most software applications devel-
oped for computer music have been to assist mu-
sic composers to create synthetical music. Creat-
ing a good piece of music not only requires crea-
tivity but also a solid background on music theo-
ries. However, for most novice players of musical
instruments, who may not have rigorous music
training, this kind of software may not be very
useful. On the reversed, what amateur players
need often is a service that converts a song or a
piece of music into an instrument-specific score
that they are familiar with. A typical example
would be to convert a song into a six-line score
with appropriate fingering styles for guitar play-
ers.

The main problem in formalizing such a process
is on mapping notes into a chord, which is not a
one-to-one mapping for a measure. Good choices
of chords often require context information like
in natural language processing. Although there

are rules to follow in harmonics, there is no for-
mal definition for how good a set of chords is. It
is more likely that the criteria for such a judge-
ment will need to refer to personal perception
eventually. Only experienced musicians can tell
good matches from bad ones, and the experience
is a black art that is difficult to quantify.

In this paper, we describe a software program
aiming at automating this score creation process
from a raw music source. Specifically, the soft-
ware takes a MIDI (Musical Instrument Digital
Interface) file [1], converts it into a simple score,
matches the score with the "best" chord set, and
then produce a six-line score for guitars as shown
in Figure 1. Users are allowed to intervene the
process by modifying immediate or final outputs.
In particular, a user can interactively modify the
chord and fingering style for any measure to cre-
ate a more harmonic match in his/her taste or
simply to add variation in chord progression.

The rest of this paper is organized as follows. In
Section 2, we describe previous researches in
computer music pertaining to our work. In Sec-
tion 3, we describe requirements for such a soft-
ware application and the overall structure of our
system. In Section 4, we give a more detail ac-
count on how each conversion step is accom-
plished. In Section 5, we present the results pro-
duced by our software package and report its per-
formance. Section 6 concludes the paper with
some discussions on possible future extensions.

Appear in Proceedings of 1997 International Symposium on

Multimedia Information Processing, 1997

Figure 1: A typical guitar score

 2

2. Related Work

Most researches in integrating computer tech-
nologies and music theories fall into two catego-
ries: computer-assisted music composition and
computer-assisted music analysis. The results
obtained in these two domains are mainly used in
music production and education.

The development of computer-assisted composi-
tion started as early as 1955 when researches on
computer synthetic voice was initiated by Hiller
and Isaacson of Illinois University and other re-
searchers in Paris and Holland. Since then, com-
puter-assisted music composition has played an
important role in music creation. It also in-
spired the development of related software for
theory learning in music education [10]. Typical
contents of a computer-assisted course on theory
learning include large staffs, notes and rests, in-
tervals, time signatures, scales, key signatures,
modulation, chords, measures, staff writing prac-
tices, music terminology, and so forth
[2][4][8][9]. As computer hardware becomes
more accessible, commercial software packages
for music composition and learning also become
more popular. For example, the Apple Computer
Inc. developed a software package for children to
learn music composition and theories. Features of
this package include chord matching, Rondo and
Canon writing, etc. [7].

Computer-assisted music analysis is another ma-
jor field in music education. There has been
many courses developed using this approach.
These courses usually cover voice crossing, har-
monics intervals, traid, Youngblood’s Hindemin-
thian Analysis of Root Progressions, Bartok's
Method of Folk-Song Analysis [5], and Hormony
Analysis. Blombach and Poland of Ohio State
University also developed a course on the analy-
sis of Bach Choral.
Despite the extensive use of computers in music
education and digital music production, not much
work has been done (at least not on every aspect)
for amateur music players. The amateurs may not
have rigorous training on music theory but still
want to have access to playing instructions for
recently published songs or music. For example,
an amateur guitar player would greatly appreciate
that computers can automatically translate his/her
favorite songs into a guitar score that they can
play on immediately. In the following section, we
will point out the necessary components for such
an application and describe how we design such a

system.

3. The System Description

The software system that we have developed
takes a MIDI file as input and generates a guitar
score for it as output. The conversion process
consists of the following three steps:
3.1. Melody extraction: In this step, we extract
the music melody from a MIDI source and output
it in a simple score format with appropriate bar
lines attached. It is straightforward to extract such
information from a MIDI file. In fact, several
commercial staff-drawing software packages
have made this capability as one of their features.
Therefore, we do not describe this process in de-
tails. For more information on this topic, see [1]0.
3.2. Chord matching: The goal in this step is to
select appropriate chords for the simple score
using an appropriate sampling frequency. The
main principle for the selection is to match the
melody of the music with a "best-fit" chord.
However, matching is not the only criteria for
chord selection since it also depends on the con-
text of adjacent chords. There are guidelines in
music theories that one can follow to resolve dis-
sonance in chord progression. Nevertheless, it is
still difficult to have a systematic way to compute
them since there are no dictatorial rules to match
chords with scores.
In this paper, we propose a novel approach to
find "best-fit" chords. In this approach, we evalu-
ate each possible chord with weighted guidelines
extracted from chord progression theories. All
reasonable matches are selected initially as can-
didates, and each guideline is given a weight ac-
cording to its importance in practice. Then the
goal of the system is to narrow down the candi-
date set by applying these weighted guidelines in
several consecutive steps. Only when a step re-
sults in multiple chords with equal weights, the
next step is taken to resolve the ambiguity. The
design principles used in this process are de-
scribed as follows. More details will be presented
in the next section.

a. Sampling frequency: Since the number of
chords that can be put in a measure is not fixed,
we first need to decide on how long we should
sample the score in order to fill in appropriate
chords. In our system, this decision is mainly
based on the occurrences of different note pe-
riods in each measure. For example, the sam-
pling accuracy is up to a eighth note (e.g.,

 3

T1213121, etc., for guitar fingering styles) for
a song in four-four time (4/4). If there are too
many sixteenth notes in a measure, then half of
a measure may be a more adequate sampling
period.
b. Melody matching: Chords result from the
resonance of melody notes. Thus, matching
melody is the main principle in chord selection.
Every note needs to be considered but domi-
nant notes should take precedence. For in-
stance, if the duration of a note is longer than
half of the sampling period, the chords match-
ing this dominant note should be given more
weights. In addition, simplicity is also another
practical consideration for chord selection.
Therefore, if the melody does not contain sharp
or flat notes, the chords without sharps and
flats are preferred.

c. Chord progression: If multiple candidate
chords result from applying the previous prin-
ciple, the context of adjacent chords is the next
to consider. In particular, we consider the
strong connection principles in chord progres-
sion such as a root note fifth downward, a third
downward, a second upward, and the golden
chord principles. In addition, resolution of dis-
sonance intervals also helps in making the de-
cision.

d. Lowest notes: If none of the principles
above help in choosing a unique “best-fit”
chord, matching the lowest note of all voices in
a measure is another good principle to follow.
This is because the lowest note is usually the
most obvious sound in a measure [3].

3.3. Guitar score generation: In this step, we use
the melody and chords found in the previous
steps to draw a six-line guitar score. Since the
score is specific to guitars, common playing prac-
tices for guitars need to be accounted for. For
example, melody notes are preferably raised by
an octave when incorporated into fingering styles,
and most finger positions are below the fifth cell
simply for playing convenience.

In addition to the above design principles, the
following functions on user interface are neces-
sary for a complete application.

l Since the chord selection is not unique, the
system needs to provide an interface for a
user to change chords, as they desire.

l The system also needs to provide an inter-
face for a user to change fingering styles for

each measure to avoid monotonousness.
l In order to instruct the players how to fol-

low the score, the system needs to provide a
function that can play the music and high-
light the note being played in real time ac-
cording to the tempo of the music.

l The system should also provide nice print-
ing capability so that the user can get a
hardcopy of the final score.

All of these functions are part of our imple-
mented system. In the next section, we will give a
more detail account on how we implemented
such a system.

4. Implementation

We will present our implementation in three steps
as described above.
4.1. Melody extraction: By analyzing the chan-
nel message in a MIDI file, we only choose the
main channel for processing. In the main channel,
we use the "Note Off" and "Note On" of the 8nh
and 9nh fields and their corresponding running
statuses to decide the starting and ending times of
each note. Then we use these two time stamps to
calculate the length of each note. In addition, we
use the 51h, 58h, and 59h fields of the FFh com-
mands in channel messages to set up bar lines,
tempo, and major key, respectively, in the simple
score.
4.2. Chord matching: The rules that we follow
to select an appropriate chord are depicted in the
flow chart shown in Figure 2 (on the next page).
Weights in units of points are used to evaluate the
fitness of a chord. Chord selection is done in
three substeps. If any substep results in a unique
chord of the heaviest weight, no further criteria
need to be applied, and the subsequent substeps
are ignored.
In order to decide on a sampling frequency, we
sample the whole music and count the number of
occurrences of the eighth notes and the sixteenth
notes. If the number of sixteenth notes is two
times more than the number of eighth notes, half
of a measure is used as the sampling period; oth-
erwise, a measure is used as the default.

4.2.1. Basic screening: Three criteria based on
melody are used to screen out obviously inappro-
priate chords.

a. Candidate chords: The initial weight for a
chord is calculated based on the number of
notes that match any of the constituent notes in

 4

the chord. The more matches to a chord, the
more points are given to it.
b. Dominant note: Based on the initial
weight mentioned above, we add one point to
each chord that contains the dominant note in
the sampling period. If the length of the domi-
nant note is longer than half of the sampling
period, we add an extra point to its weight to
emphasize its dominance.

c. Sharp and flat notes: If there are no sharp
and flat notes in a sampling period, sharp or
flat chords in the candidate set (if any) are dis-
carded. On the other hand, chords without
sharp and flat signs are discarded if the melody
notes do have any of them.

If the above yields a chord that is uniquely the
heaviest in the candidate set, then this chord is
chosen for the final guitar score; otherwise, the
following supplemental substeps are taken to re-
solve the ambiguity.
4.2.2. Second screening: We use principles in
chord progression to further differentiate the best-
fit chords that are found so far.

a. We give extra two points to the chords that
are a fifth downward, a third downward, or a
second upward with respect to the root note of
each chord chosen in the preceding sampling
period.

b. Two extra points are granted to those
chords that do not fall into the above category
but do follow common rules in chord progres-
sion (such as I→III or VI→IV).

c. If the previous chord is a dominant7 chord,
seven special rules in resolving dissonance are
applied to the candidate chords. For example,
two extra points are given to those chords that
make smooth transitions from the preceding
chords such as I7→IV, II7→V, VI7→II, and
so on. There are cases where a chord plays a
transitional role in chord progression. In order
not to exclude this possibility, some credits are
given to these transitional chords. For example,
V7 can transit to V via II7. In this case, one ex-
tra point is given to the transitional chord.

If applying the above criteria to the candidate
chords yields a unique chord of the heaviest
weight, the chord is chosen for the final score;
otherwise, we proceed to the next substep to re-
solve the ambiguity.
4.2.3. Final screening: One final auxiliary crite-

rion is on the lowest note. If the lowest note of a
sampling period is the root note of a candidate
chord, then two extra points are given to the
chord. If this final weighting can not differentiate
two equally best-fit chords, then the choice is
arbitrary.
4.3. Guitar Score Generation: The following
rules are used to generate a guitar score that con-
tains adequate fingering styles.

l Choose a primary fingering style according
to the rhythm and raise melody notes by an
octave. Whenever possible, the raised mel-
ody notes are incorporated into the primary
fingering style.

l If the primary fingering style conflicts with
the melody notes, melody notes take prece-
dence.

l If the finger position for a raised melody
note is higher than the fifth cell and the cur-
rent string is not the highest string, wrap it
to the next higher string.

Figure 2: Flow chart for selecting chords

Simple score

Decide sampling fre-
quency

Get next measure

Match constituent notes
in the chord

Find the longest notes

Have any sharp or flat
notes

Is unique one?

Root note ascending
and descending

Other common chords

Resolving dominant7
chords

Got a best-fit chord

Is EOF?

Y

Y

N

N

Finish

Find lowest note Choose any one

N Y

Is unique one?

 5

l If the raised note is over the twelfth cell on
the highest string, lower the note to its
original position.

4.4. User intervention: A reasonably good guitar
score can be generated automatically using the
above process. However, some user intervention
may further improve the resulting score. For ex-
ample, although chords are generated based on
rules in music theories, there could be other chord
sets that may sound better than the one selected
by the system. In addition, it may be more desir-
able to increase the variation of fingering styles
or variation on local sampling frequency. There-
fore, we design an interface that allows a user to
modify intermediate or final results interactively
in each of the aforementioned steps to correct or
improve the overall score.

5. Experimental Results

5.1 User interface
The software system1 was implemented in Vis-
ual C++ for 32-bit Windows operating systems.
A snapshot of the user interface for a typical song
is shown in Figure 3. Figure 4 shows a dialog box
that allows a user to change a chord interactively.
According to the tempo of a song, the system can
also animate fingering styles in real time by
changing the colors of corresponding picking
symbols. In addition, the program can produce a
nice hardcopy of the guitar score for offline uses.

5.2 System performance
Some experiments have been conducted to ob-

1 The system is available for anonymous ftp at
ftp://www.cs.nccu.edu.tw/pub/li/package
s/genchord.zip.

serve the effects of different chord selection rules
and to measure the overall system performance.
The experimental results are summarized in Ta-
ble 1 (on the next page). The data are taken on a
486-DX66 personal computer for three typical
MIDI files. The number of measures in these
MIDI files ranges from 42 to 78. More than half
of the chords were uniquely decided after the first
screening while the others were determined in the
second and the final screening. The average
number of chords left undistinguishable (after the
final screening) ranges from 2.04 to 3.5. The
choice for these chords is arbitrary. These results
show that the selection rules are adequately
weighted. The multi-step screening strategy does
save processing time by letting a good matching
chord stand out in early stages. The running time
for the overall process is only fractions of a sec-
ond, which is good enough for an interactive ap-
plication.

6. Conclusion
For all music instrument players, it is highly de-
sirable to have a computer automatically translate
the music that they have heard into scores that
they can play with. Using music theories in har-
monies and in guitar composition, we have im-
plemented a software system that converts MIDI
music into a six-line score for guitar playing in-
struction. The guitar scores generated by the pro-
gram are all quite satisfactory in common prac-
tices. We hope that this software can be benefi-
cial to all amateur music players as well as the
professions.

In our program, we assume that the input file is a
well-constructed MIDI file in order to simplify
the process of melody extraction. In practice,
most music sources are not in MIDI format yet. It

Figure 4: Interface for changing a chord

Figure 3: Snapshot of the user interface

 6

would certainly be more desirable if the system
can take its input directly from analog sources
such as CD audio. However, extracting melody
from natural sound is a challenging task and is
beyond the scope of this paper. Nevertheless, ex-
cept for the initial melody extraction, the same
processing steps can be reused for applications
with such extensions. In addition, the results
would be more fruitful if this work is extended to
produce scores in other special forms for various
music instruments.

Acknowledgement

This work was partially supported by a grant
from NSC under contract number NSC 86-2213-
E-004-006. The authors also would like to thank
Hui-Chi Wu for her careful review of this paper
on music terminology.

Bibliography

[1] S. De Furia, and J. Scacciaferro, “The MIDI
Programmers’s Handbook,” Redwood City,
Calif, M&T, 1989.

[2] F. T. Hofstetter, "Foundation, Organization,

and Purpose of the National Consortium for
Computer-Based Musical Instruction," Jour-
nal of Computer-Based Instruction, 3, pp21-
33, 1983.

[3] J.-Y. Huang and S.-W. Pan, "Music Wizards -
Breakthrough in Guitar Playing," I-Ping pub-
lishing, Taiwan, pp82-83.

[4] Y.-M. Sheu, "On Computer-Assisted Music
Education - Analyzing the Effects of Recogni-
tion Learning on Notes and Rests," Masters
thesis, Music Department, National Normal
University, Taiwan, June, 1993.

[5] B. Suchoff, "The Computer and Barok Re-
search in America," Journal of Research in
Music Education, 9(1), pp3-16, 1971.

[6] M.-H. Tsai, "On Extracting Melody in Multi-
Channel Music," Master thesis, Department
of Computer and Information Engineering,
National Taiwan University, Taiwan, June,
1996.

[7] R. Upitis, "A Computer Assisted Instruction
Approach to Music for Junior-Age Children:
Using ALF for Teaching Music Composi-
tion," in Proceedings of the International
Computer Music Conferences, April 1982.

[8] R. Upitis, "Milestones in Computer Music
Instruction," Music Educator's Journal,
48(04A), pp865, 1983.

[9] Gerhard Widmer, "Qualitative Perception
Modeling and Intelligent Musical Learning,"
Computer Music Journal, 16(2), pp51-68,
1992.

[10] Y.-H. Young, "On Computer-Assisted Music
Composition Teaching," Master thesis, Music
Department, National Normal University,
Taiwan, June 1993.

Example # 1 2 3

File Size(Bytes) 22605 13800 19300

Num. of Measures 59 78 42

Sampling Freq.

(chords/measure)
2 1 1

Basic Screening 63(54%) 41(53%) 22(52%)

Second Screening 13(11%) 13(17%) 6(14%)

Final Screening 42(35%) 24(30%) 14(33%)

Avg. Num. of

Chords Left
2.85 3.50 2.04

Running Time(sec) 0.38 0.27 0.16

Table 1: Experimental data for three examples

